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Abstract

The time-dependent solutions of a reduced air–sea coupling stochastic-dynamic model are obtained using the Fok-
ker–Planck equation and the quantum mechanical method. The analysis of the time-dependent solutions suggests that
when the climate system is in the ground state, the system behaves in a Brownian motion, thus theoretically revealing
the foothold of Hasselmann’s stochastic climate model; when the system is in the first excitation state, it evolves in a
form of time-decaying, or a 2.3-year periodic oscillation under certain condition. At last, the results are used to discuss
the impact of the doubling of carbon dioxide concentration on climate system.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Air–sea interaction is an important physical process in the climate system. Oceans cover two thirds of earth surface,
and have a tremendous thermal inertia, therefore oceans exercise an extremely important influence on atmospheric
motion, and the air–sea interaction becomes a core item in climate change studies. In turn, the atmosphere affects
the motion of seawater through wind-driven current and heat transfer. At the same time, the ocean is a most important
reservoir for carbon dioxide, and it absorbs about 1 · 1012–3 · 1012 kg of carbon from the atmosphere per year, which
accounts for 40–50% of the total carbon dioxide emission from fossil fuel burning. Therefore, scientists not only ana-
lyzed observational facts to reveal the coupling between the atmosphere and ocean, but also developed air–sea coupling
models with different complex extents to investigate the physical process [1–4]. Li and Huang [5] derived a two-variable
linear coupling model from the parameterization of diabatic process, and discussed the spectral characteristics of the
stochastic-dynamical model. Feng et al. [6] discussed the approximate solution of the model, and introduced the effect
of carbon dioxide into the model. A non-deterministic cell dynamical system model for atmospheric flows was devel-
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oped for the self-organized criticality as being intrinsic to quantum-like mechanics governing flow dynamics [7–9]. In
this paper, we apply the eigenfunction solution principle in quantum mechanics, yielding the time-dependent solutions
of the model. Then the analytical solution is used to investigate the greenhouse effect of carbon dioxide doubling and
the change in the behavior of the model, yielding some meaningful results.
2. The steady-state solution

The air–sea coupling stochastic-dynamic model equations [5,6] are
dT
dt
¼ �a1T þ b1T s þ x1ðtÞ; ð1Þ

dT s

dt
¼ �a2T s þ b2T þ x2ðtÞ; ð2Þ
where T ¼ eT � T ; T s ¼ eT s � T s are the deviations of air temperature eT , and sea surface temperature (SST) eT s, from
equilibrium state T and T s, respectively. a1, a2 and b1, b2 are self-feedback coefficients and mutual-feedback coefficients,
respectively, and they are associated with the parameters such as solar constant, effective emittance (e), specific heat at
constant pressure, densities of air and water, the exchange coefficient of sensible heat flux, and so on [5,6]. The effect of
carbon dioxide is introduced into the model through its effective emittance ec = aln[CO2] + b, that is to say, e = ec + e*,
where e* is the integrated effective emittance of all gases except CO2, a and b are empirical coefficients
(a = 0.0235, b = 0.0537); x1(t) and x2(t) are stochastic noises, and both assumed to be the white noises of zero mean
value for convenience, i.e.
hx1ðtÞi ¼ hx2ðtÞi ¼ 0;

hx1ðtÞx1ðt0Þi ¼ 2qdðt � t0Þ;
hx2ðtÞx2ðt0Þi ¼ 2qdðt � t0Þ;

ð3Þ
where q is the intensity of noise, and d the Dirac function. Differentiating Eq. (2) with respect to t, and eliminating T

and dT/dt by using Eq. (1) yield
d2T s

dt2
þ c

dT s

dt
þ x2

0T s ¼ xðtÞ; ð4Þ
where c = a1 + a2, x2
0 ¼ a1a2 � b1b2 P 0, and x(t) = a1x2(t) + b2x1(t).

2.1. Fokker–Planck equation

In order to solve Eq. (4) accurately, it is transformed into a Langevin equation group
T s

�
¼ t;

t
� ¼ �ct� f 0ðT sÞ þ xðtÞ;

ð5Þ
where f 0ðT sÞ ¼ x2
0T s; then Eq. (5) may be written in the form of Fokker–Planck equation [10–15]
oW
ot
¼ LkW ;

Lk ¼ LkðT s; tÞ ¼ �
o

oT s

tþ o

ot
ctþ f 0ðT sÞ½ � þ q

o
2

oT 2
s

;

ð6Þ
where W is the probability density distribution function of T, t, t, and L the operator of the Fokker–Planck equation.
f(Ts) is a potential function, and f 0(Ts) is its derivative. Eq. (6) can be further written in the form of the continuity equa-
tion of probability flow:
oW
ot
þ oST s

oT s

þ oSt

ot
¼ 0; ð7Þ
where
ST s ¼ T sW ; St ¼ �½ctþ f 0ðT sÞ�W � q
oW
oT s

: ð8Þ
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2.2. Steady-state solution

The steady-state solution can be obtained when and only when probability flows ST s ; St equal to constants every-
where for Ts, t, i.e. not changing with time. As known from Eq. (8), if oSt/ot = 0 is what we wanted, expression (9)
is valid
q
oW
oT s

¼ �½ctþ f 0ðT sÞ�W : ð9Þ
Then, distribution function W(Ts,t) is obtained via integrating Eq. (7) with respect to time
W ðT s; tÞ ¼ A � exp � c
2q
ðt2 þ x2

0T 2
s Þ

� �
; ð10Þ
where A is determined by normalization condition
Z
W ðT s; tÞdT s dt ¼ 1: ð11Þ
Thus, the results, same as Ref. [6], are derived through different paths.
3. Time-dependent solution

According to the definition of the first-order moment in probability theory, the mean value of Ts can be calculated
from Eq. (10)
hT si ¼
Z

T sW ðT s; tÞdT s dt: ð12Þ
However, the temporal evolution of hTsi is still unknown, therefore it is necessary to get the unsteady state solution
(time-dependent solution) for Eq. (6). The Fokker–Planck equation operator in Eq. (6) can be written as the sum of
a reversible and an irreversible operator
Lk ¼ Lrev þ Lir; ð13Þ

Lrev ¼ �t
o

oT s

þ f 0ðT sÞ
o

ot
; ð14Þ

Lir ¼ c
o

ot
tþ q

c
o

ot

� �
: ð15Þ
Generally, Lk, Lrev and Lir are not Hermitian operators, therefore it is difficult to get its eigenvalue and correspond-
ing eigenfunction. However, we can use suitable transforms to quantize them, i.e. after transformation, their forms are
Hermitian operators. As known from the steady-state solution, the distribution of Lir is positively proportional to

exp � ct2

2q

� �
. After Lir operator is left multiplied by exp ct2

4q

� �
as well as right multiplied by exp � ct2

4q

� �
, it can be proved

that Lir be a Hermitian operator
Lir ¼ exp
ct2

4q

� �
Lir exp � ct2

4q

� �
¼ c

q
c

o2

ot2
� 1

4

ct2

q

� �
þ 1

2

� �
¼ Lþir : ð16Þ
Further, similar to Ref. [16] and [17], we may introduce the eigenfunction and eigenvalue for Lir operator. Therefore,
define Boson-operators
b ¼
ffiffiffi
q
c

r
o

ot
þ 1

2

t ffiffi
q
c

q ;

bþ ¼ �
ffiffiffi
q
c

r
o

ot
þ 1

2

t ffiffi
q
c

q ð17Þ
and their commutation relation is
½b; bþ� ¼ 1; ð18Þ
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then
Lir ¼ �cbþb: ð19Þ
Expressions (18) and (19) are the well-known Hamilton’s form of simple harmonic oscillators. Similarly, a suitable
transform for Lrev yields
Lrev ¼ �t
o

oT s

þ f 0ðT sÞ
o

ot
� 1

2
f 0ðT sÞ

tc
q
¼ Lrev �

1

2
f 0

c
q
¼ �bD� bþD; ð20Þ
where
D ¼
ffiffiffi
q
c

r
o

oT s

; bD ¼ ffiffiffi
q
c

r
o

oT s

þ f 0ðT sÞ
ffiffiffi
q
c

r
; ½D; bD� ¼ f 00 ¼ x2

0: ð21Þ
Thus, the Fokker–Planck equation operator may be written as
Lk ¼ Lrev þ Lir; ð22Þ
Lk ¼ �cbþb� bD� bþD: ð23Þ
Since time t is not explicitly contained in f(Ts), distribution function W(Ts,t, t) may be written as
W ðT s; t; tÞ ¼ W kðT s; tÞ � fkðtÞ: ð24Þ
With similar treatment, the eigenvalue and corresponding eigenfunction of Fokker–Planck equation operator are
uðT s; t; tÞ ¼ uðT s; tÞe�kt; ð25Þ
LkuðT s; tÞ ¼ �kuðT s; tÞ ð26Þ
and their transformed forms are
LkuðT s; tÞ ¼ �kuðT s; tÞ; ð27Þ

uðT s; tÞ ¼ exp
c

4q
ðt2 þ f ðT sÞ

� �
uðT s; tÞ: ð28Þ
Since the commutation of D and bD is x2
0, therefore define the Boson-operator as
a ¼
bD
x0

¼

ffiffi
q
c

q
x0

o

oT s

þ x0

2
ffiffi
q
c

q T s;

aþ ¼ � D
x0

¼ �

ffiffi
q
c

q
x0

o

oT s

þ x0

2
ffiffi
q
c

q T s:

ð29Þ
a and a+ satisfy the commutation relation [a,a+] = 1, then
Lk ¼ �cbþb� x0ðabþ � aþbÞ: ð30Þ
As known from its steady-state solution, k ¼ 0;u0;0 can be obtained from the following expressions:
au0;0 ¼ bu0;0 ¼ 0;

u0;0ðT s; tÞ ¼
ffiffiffiffiffiffiffiffi
x0c
2pq

r
exp � c

4

t2

q
þ x2

0T 2
s

q

� �� � ð31Þ
and its corresponding probability distribution is
W ðT s; tÞ ¼ ju0;0ðT s; tÞj2 ¼
x0c
2pq

exp � c
2q

t2 þ x2
0T 2

s

	 
� �
; ð32Þ
which is consistent with that of steady-state solution. The value of hTsi is calculated from Eq. (12) using the values of
parameters a1,a2,b1,b2,q in Ref. [5],
hT si ¼
Z

T sW ðT s; tÞdT s dt ¼ 2:71 �C ð33Þ
and this result is in accord with the SST anomaly fluctuations within the range of 0.5–3.5 �C.
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In order to rewrite Eq. (30) as a simpler form, a set of new Boson-operators are introduced
Cþ1 ¼ d�
1
2

ffiffiffiffiffi
k1

p
bþ �

ffiffiffiffiffi
k2

p
aþ

� �
; C�1 ¼ d�

1
2

ffiffiffiffiffi
k1

p
bþ

ffiffiffiffiffi
k2

p
a

� �
;

Cþ2 ¼ d�
1
2 �

ffiffiffiffiffi
k2

p
bþ þ

ffiffiffiffiffi
k1

p
aþ

� �
; C�2 ¼ d�

1
2

ffiffiffiffiffi
k2

p
bþ

ffiffiffiffiffi
k1

p
a

� �
;

ð34Þ
where k1 and k2 are the eigenvalues of the equation when no noise exists [10],
k1 ¼ ðcþ dÞ=2; k2 ¼ ðc� dÞ=2; ð35Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4x2

0

q
¼ k1 � k2: ð36Þ
Thus, Lk becomes the sum of two simple harmonic vibrator Hamilton’s operators
Lk ¼ �k1Cþ1 C�1 � k2Cþ2 C�2 : ð37Þ
The commutation relations of Cþ1 ;C
�
1 ;C

þ
2 ;C

�
2 are as follows:
½Cþ1 ;C�1 � ¼ ½Cþ2 ;C�2 � ¼ 1;

½C�1 ;Cþ2 � ¼ ½C�2 ;Cþ1 � ¼ ½C�1 ;C�2 � ¼ ½Cþ1 ;Cþ2 � ¼ 0;

½ð�LkÞ;C�i � ¼ �kiC
�
i ði ¼ 1; 2Þ:

ð38Þ
kn1 ;n2
and corresponding eigenfunctions can be obtained from quantum mechanics
un1 ;n2
ðT s; tÞ ¼ ðn1!n2!Þ�

1
2ðCþ1 Þ

n1ðCþ2 Þ
n2u0;0ðT s; tÞ; ð39Þ

kn1 ;n2
¼ k1n1 þ k2n2 ¼

1

2
cðn1 þ n2Þ þ

1

2
dðn1 � n2Þ; ð40Þ

u�n1 ;n2
ðT s; tÞ ¼ ðn1!Þ�

1
2ðn2!Þ�

1
2ðC�1 Þ

n1ðCþ2 Þ
n2u0;0ðT s; tÞ; ð41Þ

W kðT s; tÞ ¼ ju�n1 ;n2
� un1 ;n2

j; ð42Þ
where n1 and n2 are positive integers. The probability distribution function Wk expressed in terms of eigenfunction u
can be obtained from Eqs. (39)–(42), and the mean temperature anomaly hTsi can be calculated from Eq. (12). Eqs.
(37)–(42) are obtained without the condition of oW/ot = 0, therefore W and Ts are both time-dependent solutions.
4. Results and discussions

(1) If N = n1 + n2 = 0, i.e. n1 = 0, n2 = 0. This is right a steady-state solution, i.e. the ground state, which represents
the Brownian movement. Therefore, the point of view of Hasselmann’s stochastic climatic model, viewing climate
change as a Brownian movement of light and heavy particles collision [18], is theoretically proved in this paper.
Viewed from the aspect of quantum mechanics, the possible behaviors of oceans are mostly in the ground state,
and the SST anomaly fluctuates around its mean value 2.71 �C within the range of 0.5–3.5 �C. Disturbed by factors
such as sunspots, volcanic eruption, polar ice changes, etc., the air–sea system may transit from the ground state to
the first excited state or secondary excited state or even higher order excited state. Since the distribution function is
positively proportional to exp(�kt), the higher the order of the excited state is, the shorter the state lasts. Consid-
ering that the higher order excited state has less opportunity to occur and decays rapidly, we discuss only the first
excited state here.
(2) If N = n1 + n2 = 1, i.e. n1 = 0, n2 = 1 or n1 = 1, n2 = 0, the eigenvalues of the system are
k0;1 ¼
1

2
ðc� dÞ ¼ k1; k1;0 ¼

1

2
ðcþ dÞ ¼ k2: ð43Þ
Therefore, k1,k2 are only the particular cases of kn1 ;n2
.

When and only when c� 2x0, namely, only when the self-feedback coefficient is permanently greater than the
mutual-feedback one, kn1 ;n2

can be reduced to
kn1 ;n2
¼ cn1

þ ðx2
0=cÞðn2 � n1Þ þOðc�3Þ: ð44Þ
As known from Eq. (36),
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d ¼ ðc2 � 4x2
0Þ

1
2 	 c; ð45Þ
therefore,
k0;1 ¼ k1 	 0; k1;0 ¼ k2 	 c: ð46Þ
The eigenfunctions of the first excited state are
u1;0ðT s; t; tÞ ¼ ðCþ1 Þu0;0ðT s; tÞe�k2t ð47Þ
¼ �d�

1
2

ffiffiffiffiffi
k2

p
aþu0;0ðT s; tÞe�k2 t;

u�1;0ðT s; t; tÞ ¼ d�
1
2

ffiffiffiffiffi
k2

p
aþu0;0ðT s; tÞe�k2t: ð48Þ
Then, the possible probability distribution W(Ts,t, t) of the first excited state is
W ðT s; t; tÞ ¼ ju1;0ðT ; v; tÞj ¼ u�1;0ðT s; t; tÞu1;0ðT s; t; tÞ ¼ A � exp � c
2q
ðt2 þ x2

0T 2
s Þ

� �
T 2

s e�2k2 t ð49Þ
and
W ðT s; tÞ ¼
Z

W ðT s; t; tÞdt ¼ B � exp
c

2q
� x2

0T 2
s

� �
T 2

s e�2k2t; ð50Þ
where A and B are normalized coefficients. Eqs. (49) and (50) essentially differ from the steady ground state in the time-
decaying factor of exp(�kt). Based on Eqs. (12) and (50), the mathematic expectation of SST anomaly Ts is
hT si ¼
Z 1

0

W ðT s; tÞT sdT s

Z 1

0

W ðT s; tÞdT s

�
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

c
2q x2

0p
q e�2k2t: ð51Þ
With carbon dioxide concentration be 330 · 10�6, calculated a1,a2,b1,b2,q are 0.0001,0.5127,0.2186,�0.03921
(RAD month�1), and 1.5(RAD year�1), respectively; when carbon dioxide concentration doubled, calculated
a1,a2,b1,b2,q respectively become 0.0982,0.5126,0.2186,03919 (RAD month�1), and 1.5 (RAD month�1), then
hT si330 ¼ 0:068e�0:96t; ð52Þ
hT si660 ¼ 0:192e�0:71t: ð53Þ
When carbon dioxide concentration doubled, and under the first excited state, the increment of the mean value for SST
anomaly calculated from Eqs. (52) and (53) is about 0.12 �C; while under the ground state, the corresponding increment
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Fig. 1. Decaying of SST deviation (Ts) with time when the concentration of CO2 is 330 · 10�6 (the abscissa: month).
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is 1.81 �C. However, the interesting thing is 0.71 and 0.96 in the exponential term. That is to say, when the carbon diox-
ide concentration is doubled, the decay becomes slow, which is a meaningful result. As shown in Figs. 1 and 2, the dou-
bling of CO2 concentration not only makes oceans warm, but also extends its decay period, indicating that oceans have
a bigger thermal inertia. This result accords with physical consideration.

In general, delay time is used to compare the extent of decay, here s330 = 1/0.96 = 1.04 (month), s660 = 1/0.71 = 1.41
(month), and s660 > s330. When the CO2 concentration is 330 · 10�6, it takes 1.04 months for hTsi to decay to 37% of its
original value; but when the CO2 concentration is 660 · 10�6, it takes 1.41 months. As known from Eqs. (35) and (40),
when c < 2x0, kn1 ;n2

is a complex number
d ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

0 � c2

q
¼ 2ix;

kn1 ;n2
¼ 1

2
cðn1 þ n2Þ þ

1

2
2ixðn1 � n2Þ;

ð54Þ
and the probability distribution function puts up periodic oscillations with the period being 2p
2x ¼ p

x. The eigenvalues of
the first excited state are
k1;0 ¼
1

2
ðcþ i2xÞ; k0;1 ¼

1

2
ðc� i2xÞ ð55Þ
and their oscillation forms are consistent with each other, consequently only the form of k1;0 ¼ 1
2
ðcþ i2xÞ is discussed.

The eigenfunctions are
u1;0ðT s; t; tÞ ¼ d�
1
2ð

ffiffiffiffiffi
k1

p
bþ �

ffiffiffiffiffi
k2

p
aþÞu0;0ðT s; tÞ

	 ðAtþ BT sÞe�
c

4qðt
2þx2

0
T 2

s Þe�
1
2cte�ixt; ð56Þ

u�1;0ðT s; t; tÞ 	 ðAtþ BT sÞe�
c

4qðt
2þx2

0
T 2

s Þ e�k1;0t; ð57Þ
where A,B are coefficients, determined by normalization condition. The following expressions can be obtained from
Eqs. (49) and (51)
hT si330 ¼ 0:97e�0:5127te�i0:2243t; ð58Þ
hT si660 ¼ 1:82e�0:5126te�i0:2153t: ð59Þ
It can be seen from Eqs. (58) and (59) that when the CO2 concentration is doubled, the increment of SST is 0.85 �C. The
temporal variation of the real part of hTsi330 is close to that of hTsi660; while the period T 330 ¼ 2p

0:2243
¼ 2:3 years and
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0.00
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Fig. 2. Same as Fig. 1 but for the concentration of CO2 being 660 · 10�6.
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Fig. 3. The periodical change of Ts with time when the concentration of CO2 is 330 · 10�6 (T is the period; the abscissa: month).
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Fig. 4. Same as Fig. 3 but for the concentration of CO2 being 660 · 10�6.
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T 660 ¼ 2p
0:2153

¼ 2:4 years, shown in Figs. 3 and 4. This result can be used to explain the quasi-biennial periodic oscilla-
tions in the atmosphere and oceans.

It can be clearly seen from Figs. 3 and 4 that when the CO2 concentration is doubled, the oscillation period is pro-
longed, although not so much. This indicates that under the influence of the increment of SST induced by CO2 dou-
bling, the periodic response time of the air–sea coupling system to external disturbances will be prolonged, which
remains to be confirmed by other simulation results.
Acknowledgement

This work is supported jointly by the State Key Development Program for Basic Research of China (Grant No.
2006CB400503) and the National Natural Sciences Foundation of China (Grant Nos. 40275031, 40325015, and
40231006).



G. Feng et al. / Chaos, Solitons and Fractals 37 (2008) 487–495 495
References

[1] Liu SK, Fu ZT, Wang ZG, Liu SD. Lam function and perturbation method to nonlinear evolution equations. Acta Phys Sin
2003;52(8):1837–41 [in Chinese].

[2] Feng SD, Mao JY, Zhang Q. Lattice Boltzmann equation model in the coriolis field. Chin Phys 2001;10(12):1103–9.
[3] Shi N, Deng ZW, Pan WJ, Yang YS. A preliminary study of the Northern winter SLP climate base state and its climate variability

and effects. Chin J Atmos Sci 2000;24(6):795–803 [in Chinese].
[4] Dai XG. Spectral estimation and numerical modeling of the sea surface temperature in Northern Hemisphere over the past 200 ka.

J Glaciol Geocryol 2000;22(4):317–22 [in Chinese].
[5] Li MC, Huang JY. The quasi period change in climate model. Acta Meteor Sin 1984;42(2):168–76 [in Chinese].
[6] Feng GL, Cao YZ, Cao HX. Air–sea stochastic climatic model and its application. Chin J Comput Phys 2001;18(1):57–63.
[7] Selvam AM. Deterministic chaos, fractals and quantum-like mechanics in atmospheric flows. Can J Phys 1990;68:831–41.
[8] Selvam AM. Cantorian fractal spacetime and information in neural network of the human brain. Chaos, Solitons & Fractals

1999;10(1):25–9.
[9] Selvam AM, Fadnavis S. Superstrings, Cantorian-fractal space-time and quantum-like chaos in atmospheric flows. Chaos,

Solitons & Fractals 1999;10(8):1321–34.
[10] Rishen H. The Fokker–Planck equation. Berlin: Springer-Verlag; 1984.
[11] Feng GL, Dong WJ, Jia XJ, Cao HX. On the dynamics behavior and instability evolution of air–sea oscillator. Acta Phys Sin

2002;51(6):1181–5 [in Chinese].
[12] Li JH, Huang ZQ. The stochastic resonance and chaos in the evolution of the consequent rock block slope (inclined and vertical).

Acta Phys Sin 1998;47(3):382–90 [in Chinese].
[13] Ding BJ, Kuang GL, Liu YX, Shen WC, Yu JW, Shi YJ. Simulation of lower hybrid current drive. Acta Phys Sin

2002;51(11):2556–61 [in Chinese].
[14] Huang WJ, Huang H, Li SQ. Decisive influence of the dynamic behavior of the atomic dipole moment on the quantum statistical

properties of laser field. Acta Phys Sin 1998;47(5):756–64 [in Chinese].
[15] Zhu XG, Kuang GL, Zhao YP, Li YY, Xie JK. Fokker–Planck equation in the application of fast wave heating. Acta Phys Sin

1998;47(7):1137–42 [in Chinese].
[16] Itzykson C, Zuber JB. Quantum field theory. New York: McGraw-Hill Inc.; 1980.
[17] Zhou SX. A course in quantum mechanics. Beijing: Peoples Education Press; 1979 [in Chinese].
[18] Hasselmann K. Stochastic climate models, part I, theory. Tellus 1976;28(3):473–85.


	Time-dependent solutions of the Fokker-Planck equation of maximally reduced air-sea coupling climate model
	Introduction
	The steady-state solution
	Fokker-Planck equation
	Steady-state solution

	Time-dependent solution
	Results and discussions
	Acknowledgement
	References


